
Product Data

Precision Planetary Gears Type HTRG

The HTRG product range of precision planetary gears is the outcome of years of experience in the industry, and is the culmination of a decadelong dedication to performance enhancement.

Comprising a wide range of low backlash planetary gearboxes, the units come in a range of precision classes up to 3', and are available in seven gear frame sizes, with one or more reduction stages for gearing ratios from 1:3 to 1:1000.

Double shaft, right angle shaft and right angle output shaft versions are also available.

All this, combined with tens of motor mounting adapters held in stock, mean we can quickly respond to the most diverse application requirements of our customers.

The gears can be mounted directly or by means of adaptor flanges on most of the JVL integrated servo and stepper motors as well as on the wide range of other motors from JVL.

This datasheet shows the HTRG types of gear boxes which JVL normally has in stock for JVL motors and often delivered types.

If a special type of gear box, a special ratio, less backlash, angled types etc. is not shown in the datasheet and is needed, then contact JVL Industri Elektronik and we'll find a type or a solution.

	Unit	HTRG05xxxxx	HTRG06xxxxx	HTRG08xxxxx	HTRG10xxxxx	
Size - 1 stage	mm (in)	Ø55x71 (2.17x2.8)	Ø65x76 (2.56x3)	Ø85x118 (3.35x4.65)	-	
Size - 2 stages	mm (in)	Ø55x85(2.17x3.35)	Ø65x93 (2.56x3.66)	Ø85x142 (3.35x5.6)	Ø106x168 (4.17x6.6)	
Shaft output	mm (in)	Ø12(0.47)	Ø14 (0.55)	Ø19 (0.75)	Ø25 (0.98)	
Efficiency	%	94 - 97	94 - 97	94 - 97	94 - 97	
Protection	rotection		IP 65	IP 65	IP 65	
Torque Nominal	orque Nominal Nm (lb-in) 12-20		18-30 (159.3-265.5)	40-70 (354-620)	100-170 (885-1504.6)	
Torque Peak	Torque Peak Nm (lb-in)		70-100 (619.6-885)	180-250 (1593.1-2212)	360-600 (3186-5310)	
Rated speed	Rpm	3300 - 4000	3300 - 4000	3300 - 4000 2900 - 4000		
Input flange		Nema23	Nema23, 50/70	Nema34, PAM70, 50/70	PAM70	
Recommended motors		MAC050-141	MAC050-141, 400	MAC400, MAC800	MAC800	
		MIS23x	MIS23x	SGM-04, -08		
		MST23x	MST23x	MIS34x		

LD0081-03 GB 08-4-10

Features of MP series

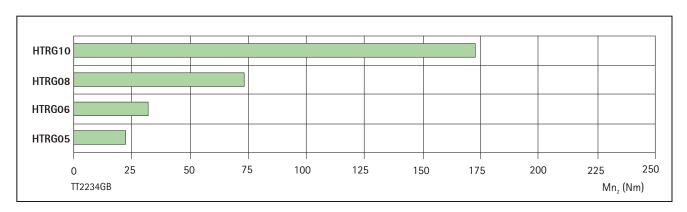
- Available in either standard or reduced backlash
- Bearings are rated for an average service life of 20,000 hours under nominal operating conditions.
 As standard, frame sizes HTRG08, HTRG06, HTRG08 and HTRG10 feature rigid ball bearings. On request,

taper roller bearings can be supplied on units HTRG08 and HTRG10 specifying option CR

The gearbox is filled in the factory with a lubricant suitable for ambient temperatures in the 0°C to 40°C range. The lubricant does not normally require changing unless it

becomes contaminated from outside.

 The type of lubricant used (grease or synthetic oil) and the material used for the seals also vary according to duty rating and gearbox size. The table below illustrates the various combinations:


duty	HTRG05	HTRG06	HTRG08	HTRG10		
S 1	G/V	G/V	0/V	0/V		
S5	G/NBR	G/NBR	G/NBR	G/NBR		

Legend:

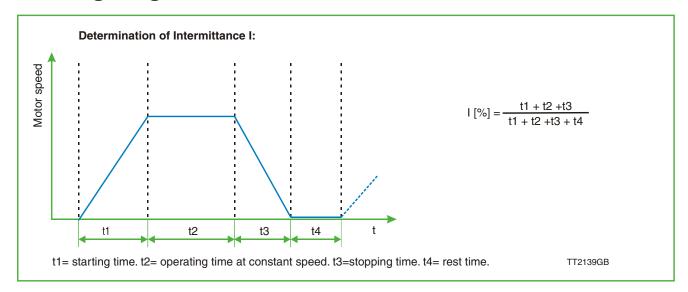
S1 = Continuous duty 0 = Synthetic oil, viscosity ISO VG 220 V= Viton® seals S5 = Intermittent duty G = Grease, consistency 00 NBR = Nitrile rubber seals

Features

- Degree of protection IP65
- Noise level $L_p \le 70 \text{ dB(A)} n_1 = 3000 \text{ min}^{-1}$
- Numerous input options
- Ratio i = 10 available for single-reduction units (i=9 for frame size 053 alone)

Gear type	Motor	Shaft
HTRGxxxxxxxN23106J	MST23x, MIS23x, MAC050-141	Ø6,35 mm
HTRGxxxxxxxN23106JC	MST23x, MIS23x, MAC050-141	Ø6,35 mm
HTRGxxxxxxx050114MC	SGM(-/E/AH) - 200, 300 and 400W	Ø14mm
HTRGxxxxxxxP70119MC	SGM(-/E/AH) – 750W, MAC800	Ø16/19 mm
HTRGxxxxxxxN34109J	MST34x, SM87	Ø9,35 mm

Calculating and selecting the size of a gearbox


The following 2 pages show how to calculate and select the size of a gearbox.

You can either calculate the gearbox you need yourself or send the informa-

tion about the application and the way you want the motor or mechanical parts to move to JVL and we can do the calculation and find the best solution for you.

If we have to make the calculations, we need the this information and also some information about the mechanical system like weight, pulley size, spindle size, etc.

Selecting the gear unit

1) Determine the applicable duty for the application:

Z = no. of acc per hour.

S5 = Cyclic duty.

S1 = Continous duty.

 M_{n2} = Continous torque.

 M_{a2} = Peak torque.

 M_{1max} = Max. motor torque.

	Z≤1000	Z>1000		
I<60%	S5	S1		
l>60%	S1	S1		

2) Determine service factor \mathbf{f}_{7}

Z	f _z
Z≤1000	1.00
1000 <z≤1500< td=""><td>1.25</td></z≤1500<>	1.25
1500 <z≤2000< td=""><td>1.50</td></z≤2000<>	1.50
2000 <z≤2500< td=""><td>1.75</td></z≤2500<>	1.75
2500 <z≤3000< td=""><td>2.00</td></z≤3000<>	2.00
Z>3000	contact us

3) determine cycle factor \mathbf{f}_{c}

- 1	20%-60%	80%	100%
fc	1.00	1.20	1,40

4) search for the gear unit for which the condition is verified:

At S1, cyclic duty:

$$M_{n2} \ge M_{1max} x i x \eta x f_z x f_c$$

$$\mathsf{M}_{\mathsf{1max}} \leq \frac{\mathsf{M}_{\mathsf{n2}}}{\mathsf{i} \; \mathsf{x} \; \mathsf{n} \; \; \mathsf{x} \; \mathsf{f}_{\mathsf{z}} \; \mathsf{x} \; \mathsf{f}_{\mathsf{c}}}$$

At S5, continous duty:

$$M_{a2} \ge M_{1max} x i x \eta$$

$$M_{1max} \leq \frac{M_{a2}}{i \times n}$$

Examples:

MAC140 motor + gear HM-GH05N010

Cycle duty (S5)

t1 0.5 sec.

t2 3.0 sec.

t3 0.5 sec.

t4 8.0 sec. 12.0 sec.

When t1+t2+t3+t4=12.0 sec. then:

Z=600 (2 acc. per 12 sec.)

$$M_{1max} \le \frac{10.7}{10x0.8} = 1.3375 \text{ Nm}$$

Continous duty (S1)

t1 0.1 sec.

t2 2.2 sec.

t3 0.1 sec.

t4 0.6 sec.

3.0 sec.

When t1+t2+t3+t4=3.0 sec. then: Z=2400 (2 acc. per 3 sec.)

$$M_{1max} \le \frac{6.76}{10x0.8x1.75x1.2} = 0.40 \text{ Nm}$$

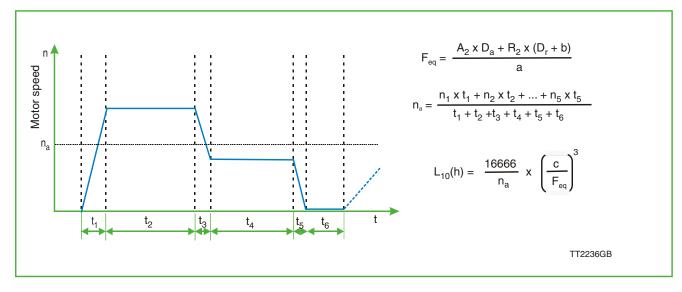
Note:

If, under particular operating conditions, a housing temperature higher than usual is to be expected, it is recommended that Viton® seals are specified at the time of order through option S1.

Under no circumstances the maximum speed $[n_{1max}]$ permitted for the gear unit should be exceeded.

Should the surface temperature exceed 90°C it is recommended that speed is reduced, or an auxiliary cooling system is provided.

Service life of bearings


Whether bearings are ball type (CS) or taper roller type (CR), their service life can be calculated through the equations where actual radial and axial forces are accounted for.

HTRG05	HTRG06	HTRG08	HTRG10		
CS	CS	CS*	CS*		

(*) Option CR available

Dr	A ₂ (N)	Offset axial force
R ₂	R ₂ (N)	Radial force
Da A ₂	Da (mm)	Distance of axial force from shaft centre
TT2235GB	Dr (mm)	Distance of radial force from mounting flange

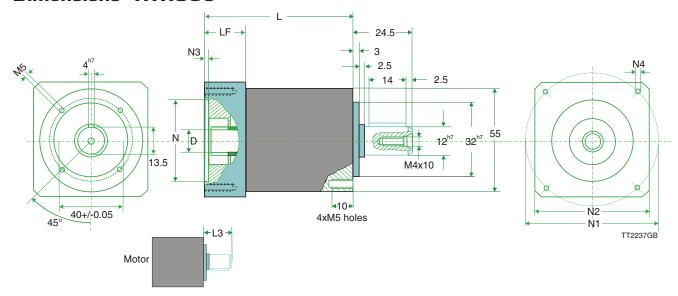
Service life - calculation for rigid ball bearings (CS)

Load location factor	HTRG05	HTRG06	HTRG08	HTRG10
a	15.5	14.4	21.5	24.5
b	17	17.4	32.3	36
С	5600	9550	14000	25700

 $[\]mathbf{F}_{en}[\mathbf{N}] = \mathbf{Equivalent}$ force resulting from radial and axial forces applying simultaneously.

Calculate e = A2/Feq and check that condition $e \le 0.19$ is verified.

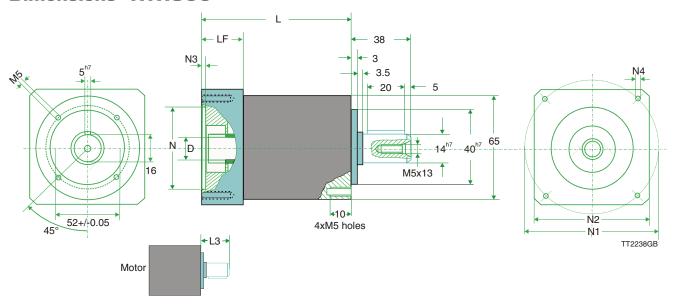
If e > 0.19 contact our Technical Service.


 $[\]mathbf{n}_{\mathbf{a}}$ [min⁻¹] = Mean output speed.

 $L_{10}(h)$ = Theoretical service life of bearings.

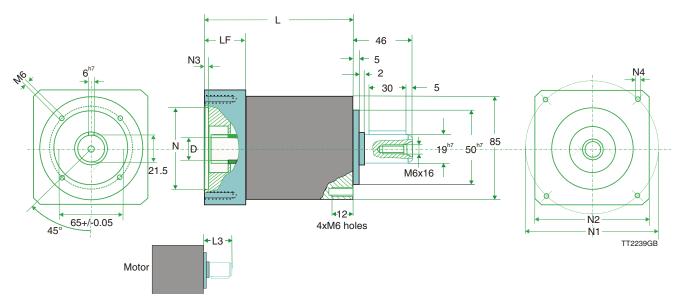
Symbols and units of measurement

Mn2	[Nm]	Nominal output torque
Ma2	[Nm]	Maximum acceleration torque, acceptable for a duty with I<60%
Mp2	[Nm]	Emergency stop torque . The value can not apply more than 1000 times over the entire life of the gear unit and should not recur in normal operating conditions
n1	[rpm]	Nominal input speed (continuous duty S1). It is the reference speed for duties with intermittance I>60% and or operating time > 20 min.
n1max	[rpm]	Maximum momentary input speed . The speed the unit can be driven occasionally and in non-repetitive conditions. For cyclic duty it can not be applied continously for more than 30 seconds.
φ	[arcmin]	Standard backlash is calculated in static conditions and with the application of a torque equal to 2% of the nominal torque for the gear unit,
Rn1, Rn2	[N]	The admissable radial force must be equal to, or greater than, the radial force actually applying onto the shaft. Catalogue value is based on output speed $n2 = 100 \text{ rpm}$
An2	[N]	The admissable thrust force can be applied axially to the shaft under study along. The given value is calculated for an output speed $n2 = 100$ rpm.
η	[%]	Dynamic efficiency is calculated through the relationship of output torque to torque applied to the input shaft under nominal
		conditions. $\eta_d = (M_2/M_1xi) \times 100$


Dimensions HTRG05

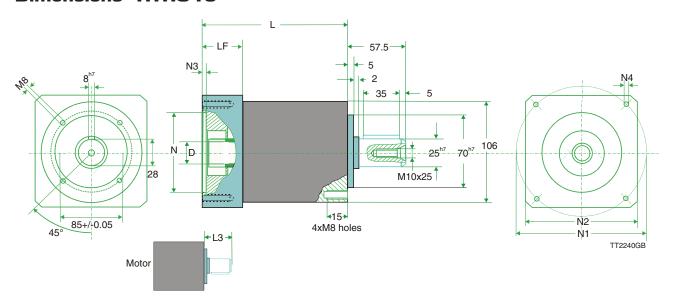
Туре	D	N	N1	N2	N3	N4	LF	L3	L	m
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
HTRG05N003MHN23106J	6,35	38,1	66,6	60	3	M4x10	18	25	71	0,8
HTRG05N005MHN23106J	6,35	38,1	66,6	60	3	M4x10	18	25	71	0,8
HTRG05N009MHN23106J	6,35	38,1	66,6	60	3	M4x10	18	25	71	0,8
HTRG05N012MHN23106J	6,35	38,1	66,6	60	3	M4x10	18	25	84,8	1
HTRG05N020MHN23106J	6,35	38,1	66,6	60	3	M4x10	18	25	84,8	1
HTRG05N100MHN23106J	6,35	38,1	66,6	60	3	M4x10	18	25	98,6	1

Туре	Mn2	Ma2	Mp2	n1	n1max	φ	Rn1	Rn2	An2	η	J
	[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[arcmin]	[N]	[N]	[N]	[%]	[kgcm ²]
HTRG05N003MHN23106J	12	22 40 3300 4		4000	15	200	500	600	97	0.06	
HTRG05N005MHN23106J	15	28	28 45 3500 5		5000	15	200	500	600	97	0.04
HTRG05N009MHN23106J	12	22	40	40 4000 6000		15	200	500	600	97	0.03
HTRG05N012MHN23106J	J 20 30 60 3300 ²		4000	15	200	500	600	94	0.06		
HTRG05N020MHN23106J	20	30	60	3500	5000	15	200	500	600	94	0.04
HTRG05N100MHN23106J	20	30	60	3500	5000	15	200	500	600	94	0.04


Dimensions HTRG06

Туре	D	N	N1	N2	N3	N4	LF	L3	L	m
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
HTRG06N005MHN23106JC	6,35	38,1	66,6	60	3	M4x10	18	25	75,55	1,2
HTRG06N009MH050114MC	6,35	38,1	66,6	60	3	M4x10	18	25	92,25	1,7
HTRG06N012MH050114MC	6,35	38,1	66,6	60	3	M4x10	18	25	92,25	1,7
HTRG06N036MHN23106JC	6,35	38,1	66,6	60	3	M4x10	18	25	92,25	1,7
HTRG06N100MHN23106JC	6,35	38,1	66,6	60	3	M4x10	18	25	92,25	1,7

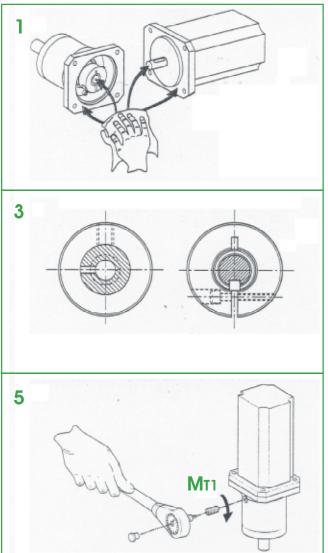
Туре	Mn2	Ma2	Mp2	n1	n1max	φ	Rn1	Rn2	An2	η	J
	[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[arcmin]	[N]	[N]	[N]	[%]	[kgcm²]
HTRG06N005MHN23106JC	25	40	90	3500	5000	15	200	600	700	97	0.05
HTRG06N009MH050114MC	18	35	70	3300	4000	15	200	600	700	94	0.12
HTRG06N012MH050114MC	30	45	100	3300	4000	15	200	600	700	94	0.11
HTRG06N036MHN23106JC	25	40	90	3500	5000	15	200	600	700	94	0.04
HTRG06N100MHN23106JC	18	35	70	4000	6000	15	200	600	700	94	0.03

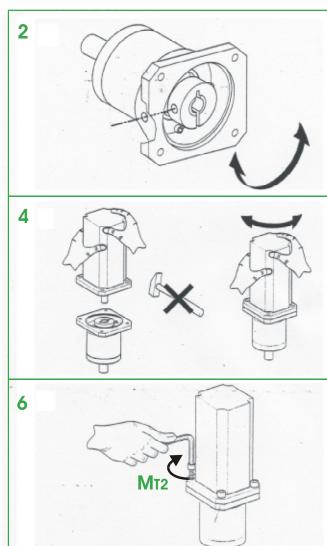

Dimensions HTRGO8

Туре	D	N	N1	N2	N3	N4	LF	L3	L	m
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
HTRG08N003MHN34109J	9,52	73	98,4	80	4	M5x16	34	40	117,5	4
HTRG08N003MHP70119MC	19	70	90	80	4	M5x16	34	40	117,5	4
HTRG08N005MHN34109J	9,52	73	98,4	80	4	M5x16	34	40	117,5	4
HTRG08N005MH050114MC	14	50	70	80	4	M4x10	34	40	117,5	4
HTRG08N005MHP70119MC	19	70	90	80	4	M5x16	34	40	117,5	4
HTRG08N010MHP70119MC	19	70	90	80	4	M5x16	34	40	117,5	4
HTRG08N012MH050114MC	14	50	70	80	4	M4x10	34	40	142	4,6
HTRG08N012MHP70119MC	19	70	90	80	4	M5x16	34	40	142	4,6
HTRG08N020MHN34109J	14	50	70	80	4	M4x10	34	40	142	4,6
HTRG08N020MHP70119MC	19	70	90	80	4	M5x16	34	40	142	4,6
HTRG08N036MH050114MC	14	50	70	80	4	M4x10	34	40	142	4,6
HTRG08N036MHP70119MC	19	70	90	80	4	M5x16	34	40	142	4,6
HTRG08N100MHP70119MC	19	70	90	80	4	M5x16	34	40	142	4,6

Туре	Mn2	Ma2	Mp2	n1		φ	Rn1	Rn2	An2	η	J
	[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[arcmin]	[N]	[N]	[N]	[%]	[kgcm ²]
HTRG08N003MHN34109J	40	80	180	2900	3500	15	400	1300	1400	97	0.50
HTRG08N003MHP70119MC	40	80	180	2900	3500	15	400	1300	1400	97	0.59
HTRG08N005MHN34109J	50	80	200	3200	4500	15	400	1300	1400	97	0.28
HTRG08N005MH050114MC	50	80	200	3200	4500	15	400	1300	1400	97	0.37
HTRG08N005MHP70119MC	50	80	200	3200	4500	15	400	1300	1400	97	0.37
HTRG08N010MHP70119MC	40	80	180	4000	6000	15	400	1300	1400	97	0.29
HTRG08N012MH050114MC	70	100	250	2900	3500	15	400	1300	1400	94	0.56
HTRG08N012MHP70119MC	70	100	250	2900	3500	15	400	1300	1400	94	0.56
HTRG08N020MHN34109J	70	100	250	3200	4500	15	400	1300	1400	94	0.27
HTRG08N020MHP70119MC	70	100	250	3200	4500	15	400	1300	1400	94	0.36
HTRG08N036MH050114MC	50	80	200	3200	4500	15	400	1300	1400	94	0.20
HTRG08N036MHP70119MC	50	80	200	3200	4500	15	400	1300	1400	94	0.29
HTRG08N100MHP70119MC	40	80	180	4000	6000	15	400	1300	1400	94	0.28

Dimensions HTRG10


Туре	D	N	N1	N2	N3	N4	LF	L3	L	m
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
HTRG10N020MHP70119MC	19	70	90	100	5	M5x12	28	40	168	6,5
HTRG10N100MHP70119MC	19	70	90	100	5	M5x12	28	40	168	8,5


Туре	Mn2	Ma2	Mp2	n1	n1max	φ	Rn1	Rn2	An2	η	J
	[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[arcmin]	[N]	[N]	[N]	[%]	[kgcm ²]
HTRG10N020MHP70119MC	170	250	600	3000	4500	15	600	1500	1600	94	0.93
HTRG10N100MHP70119MC	100	180	360	3500	5000	15	600	1500	1600	94	0.38

 $\ensuremath{\mathsf{MAC800}}$ and $\ensuremath{\mathsf{MAC141}}$ integrated servo motors mounted with HTRG gears

Mounting instructions

The procedure when mounting a HTRG Gear on a motor is as follows:

- A) Remove the small plastic cover in the side of the gear. (2) and loosen the side screw.
- B) Align the key seat of the motor shaft with the slit of the input coupling
- C) Mount the gear and motor together (4)
- D) If the flange of the motor and the gear are pressed all together, jump to H
- E) Tight the 4 screws holding the motor and gear together firmly (6)
- F) Tight the side screw firmly (5)
- G) Jump to K
- H) Tight the side screw firmly (5)
- I) Tight the 4 screws holding motor and gear together firmly.(6)
- J) Loosen the side screw and tight it firmly once more to avoid tension in the bearings (5).
- K) Succes!

Motor	Locking	Tightening	Torque	Torque
shaft	bolt	torque	transmitted	transmitted
diam.		MT1	at 20° C	at 90° C
		(Nm)	(Nm)	(Nm)
6/6.35	M4	5	9	6
9/9.52	M4	5	14	11
14	M6	11	35	25
19	M6	11	120	90

5	Tightening torque MT2 (Nm)							
Bolt size	Bolt size Bolt class							
	8.8	10.9	12.9					
M4	2.9	4.1	4.95					
M5	5.75	8.1	9.7					
M6	9.9	14	16.5					
M8	24	34	40					

General Information about the HTRG Gears

ISO 9000 certification:

The manufacturer follows ISO 9001 in its quality control. All components of the gears are tested according to procedures prescribed in the ISO standard.

Materials and manufacture:

The gear housing is manufactured of hardened 38NiCrMo5 steel that is phosphate coated for extra protection. The gear wheels are manufactured of case-hardened 18 NiCrMo5 steel. The gear teeth are all ground finished. In models that use taper roller bearings, the surface of the planetary gear wheels are pieced together to provide optimum alignment. (Models HTRG05 and HTRG06 do not use taper roller bearings due to space requirements. These models use rigid ball bearings.) The taper roller bearings are Cr100 bearings to achieve the highest precision. NSL and INA bearings are used. The output shaft is manufactured of ground finished hardened 38NiCrMo4 steel.

Tolerances:

The axial and radial slippage are a few hundredths of a mm, corresponding to C3-class bearings. The standard gears have a backlash of between 15' and 20' from the input shaft to the output shaft. Models are also available with less than 10' and 5' backlash.

Model MP053 is also available in a less expensive version with 30' backlash. The backlash is measured at a torque of 10% of the gear's rated torque. Within the ranges specified here, the backlash is dependent on the selected gear ratio. The backlash of a planetary gear is not dependent on the number of stages, but on the gear ratio of the individual stages. The slippage in the stages before the output shaft is reduced by the stage's own and each subsequent stage's gear ratio.

Temperature:

All components of the gears, including seals and O-rings, can withstand temperatures up to 100°C. During continuous operation the temperature of the gears can reach 70 to 80 °C.

Sealing:

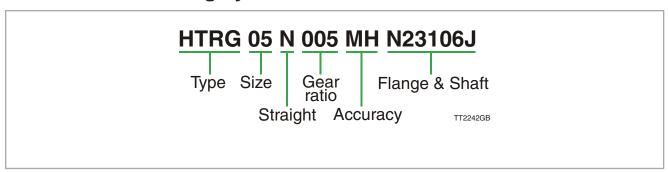
The gears fulfil IP65 requirements. IP66 requirements can also be achieved if the coupling between the motor and gear is sealed using silicone and the gear housing is painted with protective paint. The gear output shaft is however not stainless steel.

Lubrication:

The gears are lubricated with a 00density lubricant, Klubersynth GE-46 1200. This lubricant ensures good lubrication even at the very high rotational speeds at which planetary gears operate. It may also be possible to use a lubricant of the type Castrol OPTIMOL, but this has not been fully tested.

Drawings:

Engineering drawings of the gears can be supplied on diskette as AutoCad drawings in DXF format.


Gearing:

It is not recommended to use the gears 'in reverse', i.e. for gearing up. It is possible to do this at very low torques, maximum 5Nm for HTRG05 and HTRG06, and maximum 10 Nm for HTRG08 and HTRG10. It is however very risky due to the large speeds attained by planetary gears and the manufacturer recommends it is not done.

Lifetime:

The gears are supplied with a 1-year guarantee on mechanical failure of components. The lifetime of the gear depends on the rotational speed and the radial load. It will typically be 10.000 hours or more. Lubricant supplier, Kluber, specifies a lifetime of 18000 hours for the lubricant under continuous operation of the gears within the specified torque range.

Gear order numbering system

For full information on gear order numbering please contact JVL

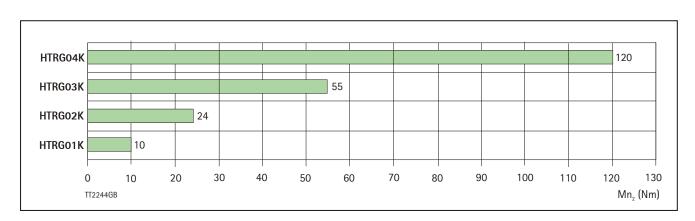
Angled Gears

Bevel helical units type HTRGxxK, manufactured under the most stringent quality specifications, are designed for dynamic and accurate applications where light weight and space effectiveness are a factor. Many options can be selected as far as motor adaptors and output shaft configurations that facilitate the installation on the driven equipment, are concerned

- Available in one backlash option (φ
 8΄)
- Single reduction; ratios i = 1, 2, 5
- Radial ball bearings are of standard supply, while taper roller bearings can be optionally specified for particularly demanding loading conditions.
- Protection IP65
- Max. noise level LP ≤ 70dB(A) @ n₁
 = 3000 min⁻¹
- Units are factory charged with synthetic lubricant suitable for operation at ambient temperatures in the range 0° to 40°C. The lubricant quantity is affected by mounting position, which therefore will have to be specified at the time of ordering. In the absence of contamination lubricant does not require periodical changes. The type of lubricant, whether grease or oil, depends on type of duty, as charted below:

duty	HTRG01K	HTRG02K	HTRG03K	HTRG04K
S1	0/V	0/V	0/V	0/V
S5	G/V	G/V	G/V	G/V

Legend:


S1 = Continuous duty

S5 = Intermittent duty

0 = Synthetic oil, viscosity ISO VG 220

G = NLGI Grease, consistency 00

V= Viton® seals

JVL Industri Elektronik A/S Blokken 42 DK-3460 Birkerød, Denmark

Tel: +45 4582 4440 Fax: +45 4582 5550 E-mail: jvl@jvl.dk www.jvl.dk